domingo, 20 de enero de 2013

Vídeo sobre el origen del universo


Este vídeo resume de manera muy visual los conocimientos más importantes sobre la teoría del Big Bang de los que he estado hablando en el blog , espero que os guste y que os sirva de ayuda :

Física especulativa más allá del Big Bang



A pesar de que el modelo del Big Bang se encuentra bien establecido en la cosmología, es probable que se redefina en el futuro. Se tiene muy poco conocimiento sobre el universo más temprano, durante el cual se postula que ocurrió la inflación. También es posible que en esta teoría existan porciones del Universo mucho más allá de lo que es observable en principio. En la teoría de la inflación, esto es un requisito: La expansión exponencial ha empujado grandes regiones del espacio más allá de nuestro horizonte observable. Puede ser posible deducir qué ocurrió cuando tengamos un mejor entendimiento de la física a altas energías. Las especulaciones hechas al respecto, por lo general involucran teorías de gravedad cuántica.

Algunas propuestas son:

  • Inflación caótica.
  • Cosmología de branas, incluyendo el modelo ekpirótico, en el cual el Big Bang es el resultado de una colisión entre membranas.
  • Un universo oscilante en el cual el estado primitivo denso y caliente del universo temprano deriva del Big Crunch de un universo similar al nuestro. El universo pudo haber atravesado un número infinito de big bangs y big crunchs. El cíclico, una extensión del modelo ekpirótico, es una variación moderna de esa posibilidad.
  • Modelos que incluyen la condición de contorno de Hartle-Hawking, en la cual totalidad del espacio-tiempo es finito. Algunas posibilidades son compatibles cualitativamente unas con otras. En cada una se encuentran involucradas hipótesis aún no testeadas.

El futuro de acuerdo con la teoría del Big Bang



Antes de las observaciones de la energía oscura, los cosmólogos consideraron dos posibles escenarios para el futuro del universo. Si la densidad de masa del Universo se encuentra sobre la densidad crítica, entonces el Universo alcanzaría un tamaño máximo y luego comenzaría a colapsarse. Éste se haría más denso y más caliente nuevamente, terminando en un estado similar al estado en el cual empezó en un proceso llamado Big Crunch. Por otro lado, si la densidad en el Universo es igual o menor a la densidad crítica, la expansión disminuiría su velocidad, pero nunca se detendría. La formación de estrellas cesaría mientras el Universo en crecimiento se haría menos denso cada vez. El promedio de la temperatura del universo podría acercarse asintóticamente al cero absoluto (0 K ó -273,15 °C). Los agujeros negros se evaporarían por efecto de la radiación de Hawking. Laentropía del universo se incrementaría hasta el punto en que ninguna forma de energía podría ser extraída de él, un escenario conocido como muerte térmica. Más aún, si existe la descomposición del protón, proceso por el cual un protón decaería a partículas menos masivas emitiendo radiación en el proceso, entonces todo el hidrógeno, la forma predominante del materia bariónica en el universo actual, desaparecería a muy largo plazo, dejando solo radiación.



Las observaciones modernas de la expansión acelerada implican que cada vez una mayor parte del universo visible en la actualidad quedará más allá de nuestro horizonte de sucesos y fuera de contacto. Se desconoce cuál sería el resultado de este evento. El modelo Lambda-CMD del universo contiene energía oscura en la forma de una constante cosmológica.Esta teoría sugiere que sólo los sistemas mantenidos gravitacionalmente, como las galaxias, se mantendrían juntos, y ellos también estarían sujetos a la muerte térmica a medida que el universo se enfriase y expandiese. Otras explicaciones de la energía oscura-llamadas teorías de la energía fantasma sugieren que los cúmulos de galaxias y finalmente las galaxias mismas se desgarrarán por la eterna expansión del universo, en el llamado Big Rip.

Materia y Energía oscura



Materia oscura:

En las diversas observaciones realizadas durante las décadas de los 70 y 80 se mostró que no había suficiente materia visible en el universo para explicar la intensidad aparente de las fuerzas gravitacionales que se dan en y entre las galaxias. Esto condujo a la idea de que hasta un 90% de la materia en el universo no es materia común o bariónica sino materia oscura. Además, la asunción de que el universo estuviera compuesto en su mayor parte por materia común llevó a predicciones que eran fuertemente inconsistentes con las observaciones. En particular, el universo es mucho menos "inhomogéneo" y contiene mucho menos deuterio de lo que se puede considerar sin la presencia de materia oscura. Mientras que la existencia de la materia oscura era inicialmente polémica, ahora es una parte aceptada de la cosmología estándar, debido a las observaciones de las anisotropías en el CMB, dispersión de velocidades de los cúmulos de galaxias, y en las estructuras a gran escala, estudios de las lentes gravitacionales y medidas por medio de rayos x de los cúmulos de galaxias. La materia oscura se ha detectado únicamente a través de su huella gravitacional; no se ha observado en el laboratorio ninguna partícula que se le pueda corresponder. Sin embargo, hay muchos candidatos a materia oscura en física de partículas, y se están llevando a cabo diversos proyectos para detectarla.


Energía oscura:


En los años 90, medidas detalladas de la densidad de masa del universo revelaron que ésta sumaba en torno al 30% de la densidad crítica. Puesto que el universo es plano, como indican las medidas del fondo cósmico de microondas, quedaba un 70% de densidad de energía sin contar. Este misterio aparece ahora conectado con otro: las mediciones independientes de las supernovas de tipo Ia han revelado que la expansión del universo experimenta una aceleración de tipo no lineal, en vez de seguir estrictamente la Ley de Hubble. Para explicar esta aceleración, la relatividad general necesita que gran parte del universo consista en un componente energético con gran presión negativa. Se cree que esta energía oscura constituye ese 70% restante. Su naturaleza sigue siendo uno de los grandes misterios del Big Bang. Los candidatos posibles incluyen una constante cosmológica escalar y una quintaesencia. Actualmente se están realizando observaciones que podrían ayudar a aclarar este punto.

Problemas comunes de la teoría



Históricamente, han surgido varios problemas dentro de la teoría del Big Bang. Algunos de ellos sólo tienen interés histórico y han sido evitados, ya sea por medio de modificaciones a la teoría o como resultado de observaciones más precisas. Otros aspectos, como el problema de la penumbra en cúspide y el problema de la galaxia enana demateria oscura fría, no se consideran graves, dado que pueden resolverse a través de un perfeccionamiento de la teoría.

Existe un pequeño número de proponentes de cosmologías no estándar que piensan que no hubo Big Bang.

Las partes más atacadas de la teoría incluyen lo concerniente a la materia oscura, la energía oscura y la inflación cósmica. Cada una de estas características del universo ha sido sugerida mediante observaciones de la radiación de fondo de microondas, la estructura a gran escala del cosmosy las supernovas de tipo IA, pero se encuentran en la frontera de la física moderna.

Si bien los efectos gravitacionales de materia y energía oscuras son bien conocidos de forma observacional y teórica, todavía no han sido incorporados al modelo estándar de la física de partículas de forma aceptable. Estos aspectos de la cosmología estándar siguen sin tener una explicación adecuada, pero la mayoría de los astrónomos y los físicos aceptan que la concordancia entre la teoría del Big Bang y la evidencia observacional es tan cercana que permite establecer con cierta seguridad casi todos los aspectos básicos de la teoría.

Evolución y Distribución galáctica

Las observaciones detalladas de la morfología y estructura de las galaxias y cuásares proporcionan una fuerte evidencia del Big Bang. La combinación de las observaciones con la teoría sugiere que los primeros cuásares y galaxias se formaron hace alrededor de mil millones de años después del Big Bang, y desde ese momento se han estado formando estructuras más grandes, como los cúmulos de galaxias y los supercúmulos. Las poblaciones de estrellas han ido envejeciendo y evolucionando, de modo que las galaxias lejanas (que se observan tal y como eran en el principio del universo) son muy diferentes a las galaxias cercanas (que se observan en un estado más reciente). Por otro lado, las galaxias formadas hace relativamente poco son muy diferentes a las galaxias que se formaron a distancias similares pero poco después del Big Bang. Estas observaciones son argumentos sólidos en contra de la teoría del estado estacionario. Las observaciones de la formación estelar, la distribución de cuásares y galaxias, y las estructuras más grandes concuerdan con las simulaciones obtenidas sobre la formación de la estructura en el universo a partir del Big Bang, y están ayudando a completar detalles de la teoría.


Para ejemplificar esta distribución galáctica este vídeo nos lo muestra a través de una simulación por ordenador , y nos da a conocer como es el universo visto a través de la teoría del Big Bang desde la tierra hasta los límites del universo conocido:




Abundancia de elementos primordiales



Se puede calcular, usando la teoría del Big Bang, la concentración de helio-4, helio-3, deuterio y litio-7.1 en el universo como proporciones con respecto a la cantidad de hidrógenonormal, H. Todas las abundancias dependen de un solo parámetro: la razón entre fotones y bariones, que por su parte puede calcularse independientemente a partir de la estructura detallada de la radiación cósmica de fondo.

Estas abundancias medidas concuerdan, al menos aproximadamente, con las predichas a partir de un valor determinado de la razón de bariones a fotones, y se considera una prueba sólida en favor del Big Bang, ya que esta teoría es la única explicación conocida para la abundancia relativa de elementos ligeros. De hecho no hay, fuera de la teoría del Big Bang, ninguna otra razón obvia por la que el universo debiera, por ejemplo, tener más o menos helio en proporción al hidrógeno.

Radiación cósmica de fondo



Una de las predicciones de la teoría del Big Bang es la existencia de la radiación cósmica de fondo, radiación de fondo de microondas o CMB. El universo temprano, debido a su alta temperatura, se habría llenado de luz emitida por sus otros componentes. Mientras el universo se enfriaba debido a la expansión, su temperatura habría caído por debajo de 3.000 K. Por encima de esta temperatura, los electrones y protones están separados, haciendo el universo opaco a la luz. Por debajo de los 3.000 K se forman los átomos, permitiendo el paso de la luz a través del gas del universo.

La radiación en este momento habría tenido el espectro del cuerpo negro y habría viajado libremente durante el resto de vida del universo, sufriendo un corrimiento hacia el rojo como consecuencia de la expansión de Hubble. Esto hace variar el espectro del cuerpo negro de 3.345 K a un espectro del cuerpo negro con una temperatura mucho menor. La radiación, vista desde cualquier punto del universo, parecerá provenir de todas las direcciones en el espacio.


En 1965, Arno Penzias y Robert Wilson, mientras desarrollaban una serie de observaciones de diagnóstico con un receptor de microondas propiedad de los Laboratorios Bell, descubrieron la radiación cósmica de fondo. Ello proporcionó una confirmación sustancial de las predicciones generales respecto al CMB —la radiación resultó ser isótropa y constante, con un espectro del cuerpo negro de cerca de 3 K— e inclinó la balanza hacia la hipótesis del Big Bang.


En 1989, la NASA lanzó el COBE y los resultados iniciales, proporcionados en 1990, fueron consistentes con las predicciones generales de la teoría del Big Bang acerca de la CMB. El COBE halló una temperatura residual de 2.726 K, y determinó que el CMB era isótropo en torno a una de cada 105 partes.


A principios de 2003 se dieron a conocer los resultados de la Sonda Wilkinson de Anisotropías del fondo de Microondas, mejorando los que hasta entonces eran los valores más precisos de algunos parámetros cosmológicos.Este satélite también refutó varios modelos inflacionistas específicos, pero los resultados eran constantes con la teoría de la inflación en general.

Base teórica del Big Bang




En su forma actual, la teoría del Big Bang depende de tres suposiciones: 

  • La universalidad de las leyes de la física, en particular de la teoría de la relatividad general 
  • El principio cosmológico 
  • El principio de Copérnico 



Inicialmente, estas tres ideas fueron tomadas como postulados, pero actualmente se intenta verificar cada una de ellas. La universalidad de las leyes de la física ha sido verificada al nivel de las más grandes constantes físicas. La isotropía del universo que define el principio cosmológico ha sido verificada hasta un orden de 10-5. Actualmente se intenta verificar el principio de Copérnico observando la interacción entre grupos de galaxias.


La teoría del Big Bang utiliza el postulado de Weyl para medir sin ambigüedad el tiempo en cualquier momento en el pasado a partir del la época de Planck.


Las medidas en este sistema dependen de coordenadas conformales, en ese sistema de coordenadas, los objetos que se mueven con el flujo cosmológico mantienen siempre la misma distancia codesplazante, y el horizonte o límite del universo se fija por el tiempo codesplazante.


Visto así, el Big Bang no es una explosión de materia que se aleja para llenar un universo vacío; es el espacio-tiempo el que se extiende.Y es su expansión la que causa el incremento de la distancia física entre dos puntos fijos en nuestro universo.

Descripción del Big Bang



Importantes físicos teóricos han señalado cierta paradoja en la denominación big bang (gran explosión): en cierto modo no puede haber sido grande ya que se produjo exactamente antes del surgimiento del espacio-tiempo, habría sido el mismo big bang lo que habría generado las dimensiones desde una singularidad; tampoco es exactamente una explosión en el sentido propio del término ya que no se propagó fuera de sí mismo.


El universo en sus primeros momentos estaba lleno homogénea e isótropamente de una energía muy densa y tenía una temperatura y presión concomitantes. Se expandió y se enfrió, experimentando cambios de faseanálogos a la condensación del vapor o a la congelación del agua, pero relacionados con las partículas elementales.


Aproximadamente 10-35 segundos después del tiempo de Planck un cambio de fase causó que el Universo se expandiese de forma exponencial durante un período llamado inflación cósmica. Al terminar la inflación, los componentes materiales del Universo quedaron en la forma de un plasma de quarks-gluones, en donde todas las partes que lo formaban estaban en movimiento en formarelativista. Con el crecimiento en tamaño del Universo, la temperatura descendió, y debido a un cambio aún desconocido denominado bariogénesis, los quarks y los gluones se combinaron en bariones tales como el protón y el neutrón, produciendo de alguna manera la asimetría observada actualmente entre la materia y la antimateria. Las temperaturas aún más bajas condujeron a nuevos cambios de fase, que rompieron la simetría, así que les dieron su forma actual a las fuerzas fundamentales de la física y a las partículas elementales. Más tarde, protones y neutrones se combinaron para formar los núcleos de deuterio y de helio, en un proceso llamado nucleosíntesis primordial.


Al enfriarse el Universo, la materia gradualmente dejó de moverse de forma relativista y su densidad de energía comenzó a dominar gravitacionalmente sobre la radiación. Pasados 300.000 años, los electrones y los núcleos se combinaron para formar los átomos (mayoritariamente de hidrógeno). Por eso, la radiación se desacopló de los átomos y continuó por el espacio prácticamente sin obstáculos. Ésta es la radiación de fondo de microondas.


Al pasar el tiempo, algunas regiones ligeramente más densas de la materia casi uniformemente distribuida crecieron gravitacionalmente, haciéndose más densas, formando nubes, estrellas, galaxias y el resto de las estructuras astronómicas que actualmente se observan. Los detalles de este proceso dependen de la cantidad y tipo de materia que hay en el Universo. Los tres tipos posibles se denominan materia oscura fría, materia oscura caliente y materia bariónica. Las mejores medidas disponibles muestran que la forma más común de materia en el universo es la materia oscura fría. Los otros dos tipos de materia sólo representarían el 20 por ciento de la materia del Universo.


El Universo actual parece estar dominado por una forma misteriosa de energía conocida como energía oscura. Aproximadamente el 70 por ciento de la densidad de energía del universo actual está en esa forma. Una de las propiedades características de este componente del universo es el hecho de que provoca que la expansión del universo varíe de una relación lineal entre velocidad y distancia, haciendo que el espacio-tiempo se expanda más rápidamente que lo esperado a grandes distancias. Aunque actualmente continúa siendo investigada tanto en el ámbito de la física teórica como por medio de observaciones.

Más misterios aparecen cuando se investiga más cerca del principio, cuando las energías de las partículas eran más altas de lo que ahora se puede estudiar mediante experimentos. No hay ningún modelo físico convincente para el primer 10-33 segundo del universo.La comprensión de este período de la historia del universo figura entre los mayores problemas no resueltos de la física.

Historia de su génesis y desarrollo

Para llegar al modelo del Big Bang, muchos científicos, con diversos estudios, han ido

construyendo el camino que lleva a la génesis de esta explicación. Los trabajos de Alexander Friedman, del año 1922, y de Georges Lemaître, de 1927, utilizaron la teoría de la relatividad para demostrar que el universo estaba en movimiento constante. Poco después, en 1929, el astrónomo estadounidense Edwin Hubble (1889-1953) descubrió galaxias más allá de la Vía Láctea que se alejaban de nosotros, como si el Universo se expandiera constantemente. En 1948, el físico ucraniano nacionalizado estadounidense, George Gamow (1904-1968), planteó que el universo se creó a partir de una gran explosión (Big Bang). Recientemente, ingenios espaciales puestos en órbita (COBE) han conseguido "oír" los vestigios de esta gigantesca explosión primigenia.


De acuerdo con la teoría, un universo homogéneo e isótropo lleno de materia ordinaria, podría expandirse indefinidamente o frenar su expansión lentamente, hasta producirse una contracción universal. El fin de esa contracción se conoce con un término contrario al Big Bang: el Big Crunch o 'Gran Colapso'.Muy recientemente se ha comprobado que actualmente existe una expansión acelerada del universo hecho no previsto originalmente en la teoría y que ha llevado a la introducción de la hipótesis adicional de la energía oscura (este tipo de materia tendría propiedades especiales que permitirían comportar la aceleración de la expansión).


La teoría del Big Bang se desarrolló a partir de observaciones y avances teóricos. Por medio de observaciones,el astrónomo estadounidense Vesto Sliphery, después de él, Carl Wilhelm Wirtz, de Estrasburgo, determinaron que la mayor parte de las nebulosas espirales se alejan de la Tierra; pero no llegaron a darse cuenta de las implicaciones cosmológicas de esta observación, ni tampoco del hecho de que las supuestas nebulosas eran en realidad galaxias exteriores a nuestra Vía Láctea.




Además, la teoría de Albert Einstein sobre la relatividad general no admite soluciones estáticas, resultado que él mismo consideró equivocado, y trató de corregirlo agregando la constante cosmológica.

El primero en aplicar formalmente la relatividad a la cosmología, sin considerar la constante cosmológica, fue Alexander Friedman, cuyas ecuaciones describen el Universo que puede expandirse o contraerse.


Entre 1927 y 1930, el sacerdote belga Georges Lemaître propuso, sobre la base de la recesión de las nebulosas espirales, que el Universo se inició con la explosión de un átomo primigenio, lo que más tarde se denominó "Big Bang".


En 1929, Edwin Hubble probó que las nebulosas espirales son galaxias y midió sus distancias.Descubrió que las galaxias se alejan unas de otras a velocidades (relativas a la Tierra) directamente proporcionales a su distancia. Este hecho se conoce ahora como la ley de Hubble.




Según el principio cosmológico, el alejamiento de las galaxias sugería que el Universo está en expansión.


Con el pasar de los años, las evidencias observacionales apoyaron la idea de que el Universo evolucionó a partir de un estado denso y caliente. Desde el descubrimiento de laradiación de fondo de microondas, en 1965, ésta ha sido considerada la mejor teoría para explicar el origen y evolución del cosmos. Antes de finales de los años sesenta, muchoscosmólogos pensaban que la singularidad infinitamente densa del tiempo inicial en el modelo cosmológico de Friedman era una sobreidealización, y que el Universo se contraería antes de empezar a expandirse nuevamente. Stephen Hawking y otros demostraron que esta idea no era factible, y que la singularidad es un componente esencial de la gravedad de Einstein. Esto llevó a la mayoría de los cosmólogos a aceptar la teoría del Big Bang, según la cual el Universo que observamos se inició hace un tiempo finito.


Gran parte del trabajo actual en cosmología trata de entender cómo se formaron las galaxias en el contexto del Big Bang, comprender lo que allí ocurrió y cotejar nuevas observaciones con la teoría fundamental.


A finales de los años 1990 y principios del siglo XXI, se lograron grandes avances en la cosmología del Big Bang como resultado de importantes adelantos en telescopía, en combinación con grandes cantidades de datos satelitales.Estos datos han permitido a los cosmólogos calcular muchos de los parámetros del Big Bang hasta un nuevo nivel de precisión, y han conducido al descubrimiento inesperado de que el Universo está en aceleración.

Introducción a la teoría del Big Bang



En cosmología física, la teoría del Big Bang o teoría de la gran explosión es un modelo científico que trata de explicar el origen del Universo y su desarrollo posterior a partir de una singularidad espaciotemporal. El término "Big Bang" se utiliza tanto para referirse específicamente al momento en el que se inició la expansión observable del Universo como en un sentido más general para referirse al paradigma cosmológico que explica el origen y la evolución del mismo.


La idea central del Big Bang es que la teoría de la relatividad general puede combinarse con las observaciones de isotropía y homogeneidad a gran escala de la distribución de galaxias y los cambios de posición entre ellas, permitiendo extrapolar las condiciones del Universo antes o después en el tiempo.


Una consecuencia de todos los modelos de Big Bang es que, en el pasado, el Universo tenía una temperatura más alta y mayor densidad y, por tanto, las condiciones del Universo actual son muy diferentes de las condiciones del Universo pasado. A partir de este modelo, George Gamow en 1948 pudo predecir que debería de haber evidencias de un fenómeno que más tarde sería bautizado comoradiación de fondo de microondas.